silicone.kiev.ua - полиэфирная смола купить недорого

Влияние температуры на физико-механические свойства стеклопластиков

Физико-механические показатели стеклопластиков как конструктивного мате риала в значительной степени зависят от его температурно-влажностного состояния. В отечественной и зарубежной литературе вопросы поведения стекло пластиков при различных температурах недостаточно освещены, что в известной мере ограничивает возможности применения их в строительных конструкциях.

При обычных температурах свойства стеклопластиков в основном определяются направленностью стекловолокна его составом и процентным содержанием в материале, а также зависят oi вида связующего. Известно, что стекловолокно сохраняет свою прочность до температуры 300—350°, поэтому тепло стойкость стеклопластиков определяется видом и свойствами связующего. Немало важное влияние на теплостойкость материала оказывает также технология его изготовления.

Изменение физико-механических показателен стеклопластиков при повышенных температурах происходит главным образом в результате структурных преобразований в связующих (деполимеризаиия структурирование), появления дополнительных внутренних напряжений в материале и ослабления адгезионных связей между стекловолокном и клеящим составом.

Нередко теплостойкость стеклопластиков изучалась по показателям теплостойкости Мартенса и по изменению веса. Но эти критерии являются условны ми и совершенно недостаточными

В ряде зарубежных стран проведены исследования влияния температуры на прочностные и упругие характеристики стеклопластиков, однако полученные результаты зачастую не совпадают между собой. Это в большой мере объясняется разнообразием и спецификой свойств стеклопластиков, изготавливаемых по разным технологическим режимам 5,6. Кроме того, несомненно сказалось и различие в методах изготовления и испытания образцов.

Ниже описываются результаты проведенных в ЦНИИСКе испытаний отечественных стеклопластиков на растяжение и изгиб при повышенных температурах. Исследовалось несколько промышленных и опытных партий материала, изготовленного на основе стекломатов и полиэфирных фенольных связующих. Изучены также стеклотекстолиты (КАСТ, КАСТ-В и материалы на полиэфирном связующем ПН-1) и стеклопластик АГ-4С.

Образцы на растяжение (3—5 образцов на каждую опытную точку) изготавливались по ГОСТ 4649—55, на изгиб (5—8 образцов) — в соответствии с ГОСТ 4648—56. Испытания проводились на машинах «Шоппер», оборудованных специальными нагревательными камерами. Скорость движения подвижной головки составляла при растяжении 20 мм!мин., при изгибе — 30—50 мм/мин. Предварительно на контрольных образцах определялись основные физико-механические характеристики: объемный вес стеклопластиков, количество стекловолокна, пределы прочности и модули упругости при растяжении и изгибе. Температура 80° была принята как соответствующая максимально возможному нагреву элементов строительных конструкций солнечными лучами.

Влияние повышенных температур на механические свойства стеклопластиков выявлялось прн двух различных температурных режимах: при первом образцы нагревали до заданной температуры, выдерживали определенное время и испытывали в нагретом состоянии: при втором режиме после выдерживания в течение некоторого времени в условиях заданной температуры образцы охлаждали и испытывали при 20°.

Результаты испытаний представлены в табл. 1.

Как видно из приведенных данных наиболее резкое снижение прочностных показателей стеклопластиков наблюдается в начале температурного воздействия. Снижение пределов прочности при растяжении и изгибе стеклопластиков на основе полиэфирного связующего (ПН-1) при кратковременных испытаниях lt= = 80°) составляет соответственно 25,6— 50,2% и 31.1—86,3%. Для стеклопластиков на фенольных связующих (феноло-спирты. Р-21. К-6) эти параметры равны 26,6—27 и 33,4—51,8%, а для стеклотекстолитов КАСТ-В, КАСТ и стеклопластика АГ-4С соответственно составляют 21,3—22% и 19.7—41,5%.

Ранее было отмечено, что в стабильности механических свойств при повышенных температурах стеклопластиков, изготовленных на основе стекловолокнистых наполнителей одного типа, определенную роль играет вид полимерных связующих. Наибольшее снижение прочности при 80° наблюдается у стеклопластиков на полиэфирных связующих. При использовании фенолоспиртов снижение прочности при изгибе стеклопластика уменьшается на 18,4% в сравнении со снижением прочности пластика на основе Р-21.

Следует отметить, что однонаправленное расположение стеклонаполнителя в материале обеспечивает наиболее стабильные прочностные показатели его при повышенных температурах. Так, например, снижение прочности на растяжение при направленном расположении наполнителя (1:0) составляет 26,6%. а равнопрочного (1:1) —37,2%.

Влияние типа стеклонаполнителя на стабильность физико-механических свойств при повышенных температурах изучалось на стеклопластиках со связующим— полиэфирной смолой ПН-1 В качестве стеклонаполнителей были использованы стеклоткань (марки Т-1) и маты из рубленого стекловолокна бесщелочного состава.

В первом случае стеклонапонитель представляет собой единую высокопрочную структуру, все элементы которой взаимосвязаны. В стекломатах отдельные волокна (длиной 1,5—2 см) хаотично расположены в материале и связаны между собой полимерной клеящей средой, что приводит к повышению роли связующего в стабильности показателей структурной прочности материала при повышенных температурах.


Чтобы выявить, в какой степени снижение прочности зависит от неполной полимеризации связующих, допущенной в процессе изготовления этих стеклопластиков, образцы предварительно выдерживались при 80е в течение 250 час. и затем испытывались в нагретом и охлажденном состояниях. Результаты испытаний (табл. 1) показывают значительное повышение теплостойкости стеклопластиков на основе полиэфирных связующих. По-видимому, это объясняется тем- что, в отличие от фенольно-формальдегидных, полиэфирные стеклопластики изготовляются контактным методом холодного отверждения (нанесение стекло-волокпистого наполнителя на форму, пропитка его смолой и последующая тщательная укатка материала валиками при нормальной температуре). Испытываемые образцы полиэфирных стекло пластиков предварительно в течение го да выдерживались в помещении. Вез}ль- таты испытаний показывают, что технологические режимы изготовления эти 4 партий стеклопластиков не обеспечивают завершения полимеризации связующих. При соответствующем изменении технологии изготовления стеклопластиков прочностные свойства этих материалов могут быть повышены.

С увеличением времени термообработки стеклопластиков до 1000 час. наблюдается некоторое снижение их прочностных характеристик, что по-виднмому стеклопластика АГ-4С, снижаются в большей степени, нежели деформативные характеристики.

На основании проведенных экспериментальных исследовании можно сделать вывод о значительном падении прочности некоторых видов отечественных стеклопластиков при изгибе и несколько меньшем при растяжении причем снижение модуля при изгибе меньше, чем падение предела прочности.

Вид полимерного связующего оказывает решающее влияние на стабильность механических показателе и стеклопластиков при повышенных температурах Наибольшее понижение прочностных и упругих свойств при повышенных температурах объясняется одновременным развитием двух структурных процессов, противоположно влияющих на их прочностные свойства. С одной стороны, завершается полимеризация и поликонденсация связующих; с другой — происходят процессы термической деструкции, снижающие механические характеристики. Соотношение этих процессов и их влияние на физико механические свойства стеклопластиков определяются температурой и временем термообработки.

В связи с этим интересно отметить, что Л. Н Голубенкова, Г. Л. Слонимский и В А. Каргин, изучая процесс отверждення фенольно-формальдегидных резольных смол, пришли к выводу, что повышение температуры может привести как к увеличению, так и уменьшению прочностных характеристик смол в зависимости от степени воздействия температуры на структурные связи смол. Они также установили, что для каждого вида исследованных смол существует температурный интервал, прогревание в котором вызывает снижение прочностных характеристик

Помимо определения предела прочности стеклопластиков, изучалось снижение модуля упругости при изгибе в результате первичного нагрева. Данные табл. 2 показывают, что снижение модуля упругости при изгибе двух видов стеклопластиков на основе полиэфирного связующего (АН-1) при 40° составляет 25— 28% Для стеклопластиков на основе фе вольных связующих понижение модуля упругости при изгибе при 80° не превышат 28 2%.


Дополнительная термообработка материала при 80° в течение 250 час. приводит к повышению прочностных показателей Это свидетельствует о том, что в производстве стеклопластиков, выпускаемых ныне, остается незавершенным процесс полимеризации связующих Таким образом, встает вопрос об изменении технологических режимов производства этих материалов с тем, чтобы значительно повысить их физико-механические свойства.