Предлагаем приобрести по выгодной цене плодородный грунт, узнать условия доставки и отзывы клиентов.

Технология укрепления грунтов укрепляющими растворами

В мировой практике существует богатый арсенал различных химических реагентов, способных закрепить грунт основания на достаточно длительный период. К достоинствам химических способов относятся: высокая степень механизации всех операций; возможность упрочнения грунтов до заданных проектом параметров в их естественном залегании; сравнительно малая трудоемкость, резкое сокращение ручного неквалифицированного труда по откопке траншей.

В начале 60 х гг. для улучшения свойств грунтов основания широко использовались кремнийорганические соединения (этилсиликат натрия). Химическими способами были креплены грунты в основании фундаментов здания тяговой подстанции трамвая в г. Усолье- Сибирское Иркутской области. Деформации этого относительно легкого здания произошли из-за неравномерных поднятий силами морозного пучения и соответствующих просадок при оттаивании расструктуренного грунта. Фундаменты имели заглубление 1,2 м от планировочной отметки при промерзании грунтов в этом регионе до 2,7—3,0 м. С использованием этилсиликата натрия были стабилизированы также аварийные осадки двух складских неотапливаемых построек и одного жилого здания на морозоопасных и просадочных грунтах.

Химическое закрепление грунтов позволяет успешно решать многие задачи реконструкции при достаточно сложных инженерно-геологических условиях. Приведем характерный пример из практики в Петербурге. В 1959—60 гг. для предотвращения аварийных осадок стен сценической части здания Мариинского театра было выполнено химическое закрепление грунтов в основании ленточных фундаментов. Закреплению подлежал песок пылеватый с коэффициентом фильтрации 0.5—1,5 м/сут и пористостью п = 0,44. Толща песков составляла 3—4,5 м ниже подошвы фундамента. Закрепление производили по традиционной схеме с использованием карбамидной смолы плотностью 1,076—1,08 г/см3 и 3 %-го раствора соляной кислоты.

Вначале нагнетали раствор соляной кислоты (400 л), затем — 50 л воды и после этого — гаствор смолы (400 л). Нагнетание осуществлялось плунжерными насосами ПСБ-4 и НР-3 при давлении 0,3 МПа. Объем одной заходки, приходящейся на 1 инъектор, составил 0,6—0,7м3.

Однако, следует отметить, что многие химреагенты токсичны и требуют специального орашения. Поэтому в последние годы появились работы, обосновывающие возможность использования нетоксичных либо слаботоксичных составов для закрепления грунта с использованием карбамидных смол. В связи с усиленным вниманием к охране окружающей среды необходимо более строго подходить ко всем рекомендуемым «универсальным» химическим реагентам. Так, несомненно вредно воздействуют на окружающий незакрепленный грунт и подземные грунтовые воды широко рекомендуемые кислоты и щелочи высокой концентрации. Специальными исследованиями, выполненными во ВНИИОСПе была выявлена токсичность и экологическая несостоятельность целого ряда реагентов, рекламируемых для закрепления грунтов в условиях реконструкции, в частности, акриловых, фенольно-формальдегидных, фурановых, хромлигниновых и карбамидных смол с несвязным формальдегидом.

Представляется обоснованным отказ многих специалистов от использования большей части химических реагентов, за исключением традиционно применяемых силикатов (одно и двухрастворная силикатизация).

Однорастворная силикатизация, предложенная НИИОСП в довоенные годы, заключается в том, что в грунт нагнетается предварительно подготовленная композиция из гелеобразующей основы (жидкого стекла) и отвердителя. При невысокой вязкости смеси она может нагнетаться даже в слабофильтрующие песчаные грунты (с коэффициентом фильтрации 1—5 м/сут).

Сравнительно новая технология, разработанная в начале 70-х гг. в развитие изложенной выше, была названа газовой силикатизацией. Сущность способа состоит в том, что в закрепляемый грунт первоначально (под давлением до 0,2 МПа) вводят углекислый газ с целью активации поверхности минеральных частиц, а затем — раствор жидкого стекла с плотностью 1,19—1,30 г/см3 (в зависимости от водопроницаемости грунта). Газовая силикатизация, к сожалению, мало расширяет пределы применимости способа, ее применение ограничивается песчаными разностями с коэффициентом фильтрации до 0,5 м/сут.

В этот же период был предложен метод электросиликатизаци (см. рис. 4.17), при которой одновременно с нагнетанием в слабофильтрующие грунты однорастворной гелеобразующей смеси на основе силиката натрия на инъекторы подается напряжение от источника постоянного тока. Расход электроэнергии составляет обычно до 30 кВт на 1 м3 закрепляемого грунта. Расход растворов такой же, как при обычной силикатизации.

Смеси типа «Актизол», в состав которых входят: цемент, бентонит, силикатная и минеральная добавки считаются наиболее эффективными.

Применение таких смесей используется тя укрепле] пгя аллювиальных (наносных) грунтов и устройства надежных проти- вофильтрационных завес. Основными преимуществами смеси являются отсутствие загрязнения окружающей среды, возможность использования многих типов цемента, высокая подвижность при коротком времени схватывания.


Вполне безопасным с точки зрения воздействия на окружающую среду является закрепление грунтов с использованием портландцемента. Как известно, затвердевший портландцемент состоит в основном из гидросиликата кальция, практически нерастворимого в воде. В силу этого представляются перспективными инъекционные и буросмесительные способы. Технология их применения основана на смешивании слабых грунтов с водоцементной суспензией.